Row-Wise Backward Stable Elimination Methods for the Equality Constrained Least Squares Problem
نویسندگان
چکیده
It is well known that the solution of the equality constrained least squares (LSE) problem minBx=d ‖b−Ax‖2 is the limit of the solution of the unconstrained weighted least squares problem min x ∥∥ [ μd b ] − [ μB A ] x ∥∥ 2 as the weight μ tends to infinity, assuming that [B A ] has full rank. We derive a method for the LSE problem by applying Householder QR factorization with column pivoting to this weighted problem and taking the limit analytically, with an appropriate rescaling of rows. The method obtained is a type of direct elimination method. We adapt existing error analysis for the unconstrained problem to obtain a row-wise backward error bound for the method. The bound shows that, provided row pivoting or row sorting is used, the method is well-suited to problems in which the rows of A and B vary widely in norm. As a by-product of our analysis, we derive a row-wise backward error bound of precisely the same form for the standard elimination method for solving the LSE problem. We illustrate our results with numerical tests.
منابع مشابه
Error Analysis of Elimination Methods for Equality Constrained Quadratic Programming Problems
A backward error analysis for the orthogonal factorization method for equality constrained quadratic programming problems has been developed. Furthermore, this method has been experimentally compared with direct elimination method on a class of test problems. 1 Statement of the problem We consider the equality constrained quadratic programming (QPE) problem min Cx=d 1 2 xAx+ bx+ ν (1) where C i...
متن کاملUpdating QR factorization procedure for solution of linear least squares problem with equality constraints
In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. ...
متن کاملBackward Error Bounds for Constrained Least Squares Problems ∗
We derive an upper bound on the normwise backward error of an approximate solution to the equality constrained least squares problem minBx=d ‖b − Ax‖2. Instead of minimizing over the four perturbations to A, b, B and d, we fix those to B and d and minimize over the remaining two; we obtain an explicit solution of this simplified minimization problem. Our experiments show that backward error bou...
متن کاملAccuracy and Stability of the Null Space Method for Solving the Equality Constrained Least Squares Problem
The null space method is a standard method for solving the linear least squares problem subject to equality constraints (the LSE problem). We show that three variants of the method, including one used in LAPACK that is based on the generalized QR factorization, are numerically stable. We derive two perturbation bounds for the LSE problem: one of standard form that is not attainable, and a bound...
متن کاملLeft vs right representations for solving weighted low-rank approximation problems
The weighted low-rank approximation problem in general has no analytical solution in terms of the singular value decomposition and is solved numerically using optimization methods. Four representations of the rank constraint that turn the abstract problem formulation into parameter optimization problems are presented. The parameter optimization problem is partially solved analytically, which re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 21 شماره
صفحات -
تاریخ انتشار 1999